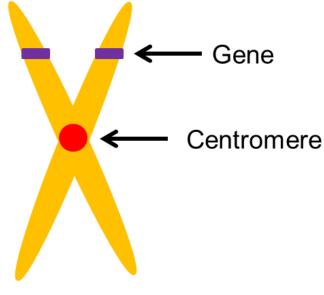
Fluorescence In Situ Hybridization (FISH)

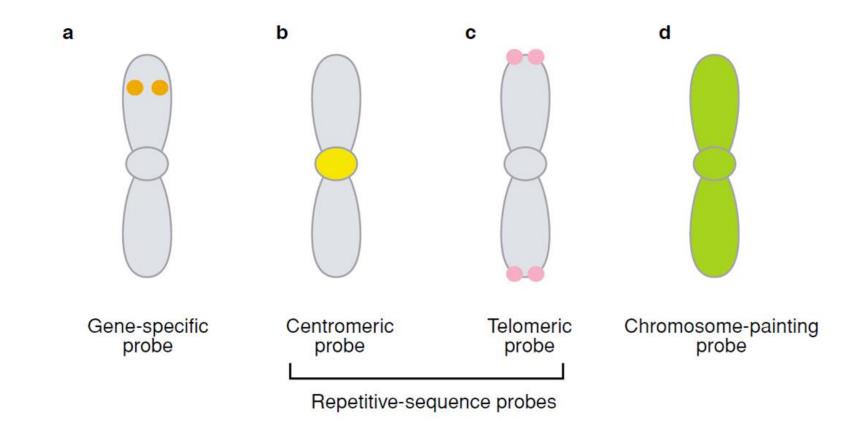
Author Information and Affiliations:

Holli Drendel, PhD, FACMG Atrium Health, Carolinas Pathology Group Cytogenetics and Molecular Pathology Date Created: 3/19/2024



Fluorescence in situ Hybridization (FISH)

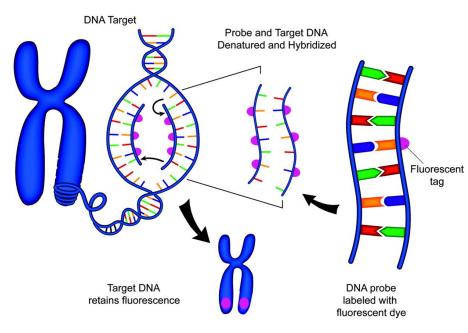
- <u>Fluorescence</u> <u>In</u> <u>Situ</u> <u>Hybridization</u>
- FISH is a molecular cytogenetic technique that allows DNA sequences to be detected in cells.
- DNA probes are denatured (made single-stranded) and hybridized to entire chromosomes or specific loci or regions of a chromosome.
- FISH serves as a powerful adjunct to classical cytogenetics.


What is FISH?

- Used to detect abnormalities in patient DNA
- Detection performed with small fragments of DNA (probes)
 - Locus specific: probe is on or near the gene of interest
 - Centromeric: probe identified the centromere of a chromosome
 - Painting probe covers the entire chromosome
 - Telomere probes mark the subtelomeric region of the chromosome
- Each probe has a fluorophore attached to it
 - The fluorescent probe is visualized with a fluorescence microscope equipped with appropriate filters

Chromosome

FISH Probe Types



Examples of different types of fluorescence in situ hybridisation (FISH) probes Expert Reviews in Molecular Medicine © 2000 Cambridge University Press

http://www-ermm.cbcu.cam.ac.uk/00001940a.pdf

Molecular basis of FISH

- DNA probe is labelled with a fluorescent marker
- DNA probe and target DNA are denatured and the probe hybridizes to the target DNA.
- Following hybridization, unbound and non-specifically bound DNA probe is removed by a series of stringent washes and the DNA counterstained for visualization (DAPI).
- Fluorescence microscopy then allows for the visualization of the hybridized probe on the target material.

Advantages of FISH

- May be performed on dividing and non-dividing cells
- Will detect cryptic deletions and translocations
- Will detect low level mosaicism
- Faster turn-around-time than G-banded studies
- May be performed on paraffin-embedded tissue (PET) sections
- Clarifies complex/ambiguous cytogenetic results

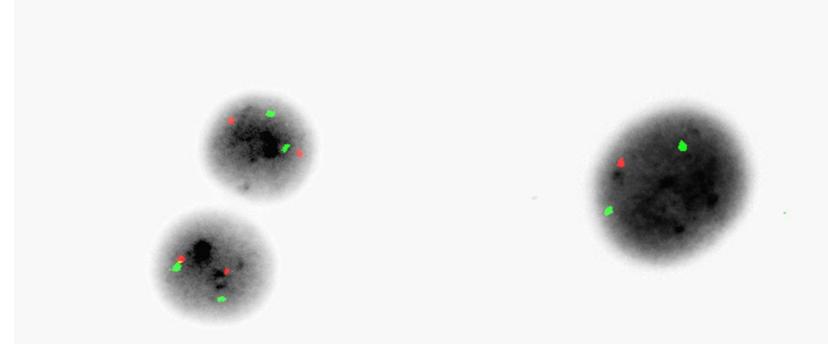
Sources of DNA for analysis

- Peripheral Blood
- Bone Marrow
- Bone Core
- Amniotic Fluid
- Chorionic Villus tissue
- Neoplastic/Non-neoplastic tissue
- Paraffin Embedded tissue (PET)
- Fixed Cell Pellet
- Others

Classes of Probes

Probes

- Derived from gene/location of interest
- >500 kilobases (kb) long
- Fluorophore options
 - FITC (green)
 - Texas Red (red)
 - Spectrum Gold (gold)
 - Spectrum Aqua (aqua)
 - Others...


Classes of Probes

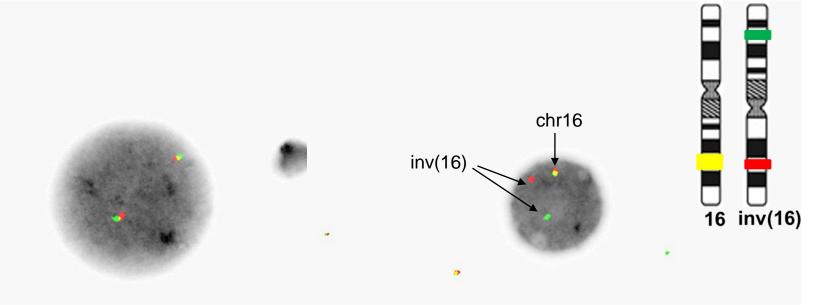
- Locus specific probes (LSI)
 - Used to elucidate deletions, rearrangement or gains/amplifications
 - Dual Color Locus Specific / Enumeration
 - Indicates deletions or gains of gene of interest
 - Normal: 2R2G; Abnormal: 1R2G
 - Break apart probes
 - Indicate a rearrangement of gene of interest
 - Normal: 2F; Abnormal: 1R1G1F
 - Can have atypical patterns indicating rearrangement

Classes of Probes

- Dual Color/Dual Fusion or Tri-Color/Dual Fusion
 - Indicates a potential translocation of genes of interest
 - Normal: 2R2G; Abnormal: 1R1G2F
- Chromosome enumeration probes
 - Used to determine how many copies of an individual chromosome are in a cell
 - Centromere probes
 - Indicates the number of chromosomes present
 - i.e. 'Counts the chromosomes'

Dual color enumeration-5p and 5q Interphase (non-dividing) Cells

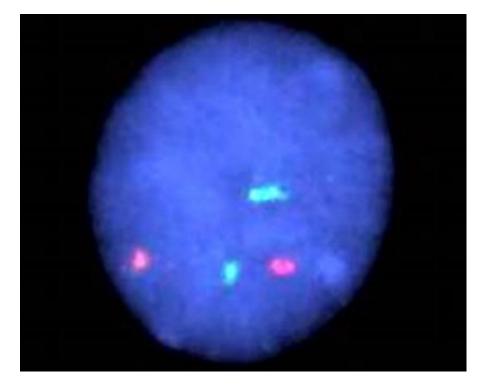
Normal Chromosome 5 signals (2R2G)

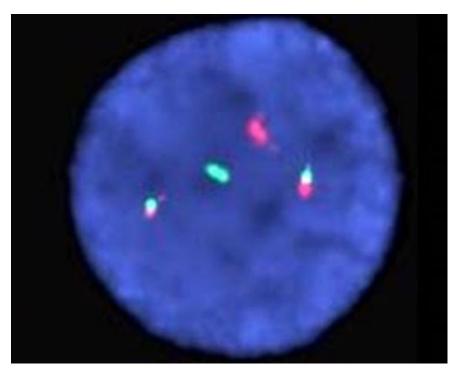

Abnormal Chromosome 5 signal Deleted 5q (1R2G)

del(5q)

5

Break Apart Probe- inv(16)

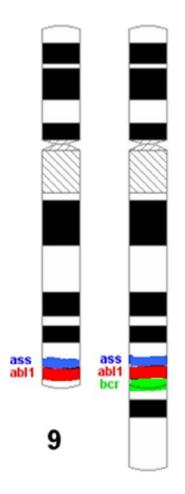

Interphase (non-dividing) Cells

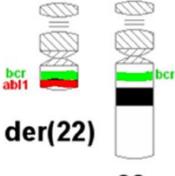


Normal Chromosome 16 signals (2F)

Abnormal Chromosome 16 signal inverted 16 (1F1R1G)

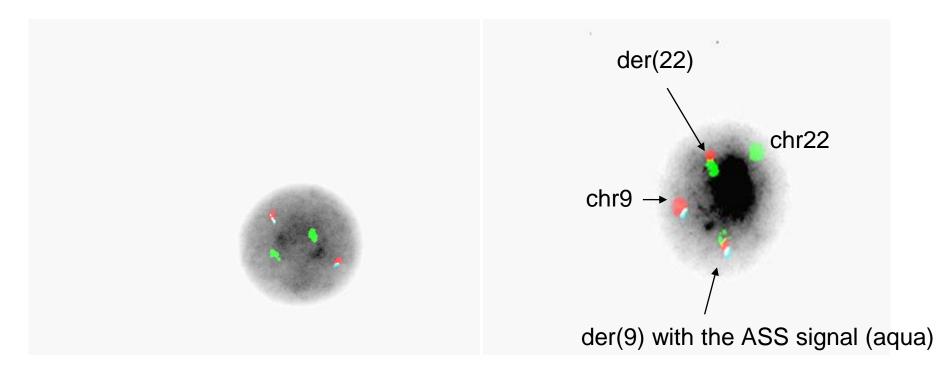
Dual color/Dual fusion probest(15;17)




Normal pattern: 2R2G

Abnormal pattern: 2F1R1G

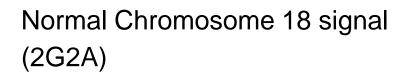
Tri-Color/Dual Fusion-BCR/ABL1/ASS


bcr/abl1 translocation

22

der(9)

Tri-Color/Dual Fusion-BCR/ABL1/ASS



Normal *BCR/ABL1*/ASS signal (2R2A2G)

Abnormal *BCR/ABL1/ASS* signal (2F1R1G)

Centromere Probes-Trisomy 18

Aqua: Centromere 18 Green: Centromere X

Abnormal Chromosome 18 signal (2G3A) Trisomy 18