Pharmacogenomics

Author Information and Affiliations:

Casey Brewer, PhD, FACMG Cincinnati Children's Hospital Medical Center Division of Human Genetics Date Created: June 26, 2024

Pharmacogenomics (PGx)

- The study of how a person's genes affect his or her response to medications
- Goal is to help doctors select the correct drugs and prescribe the correct doses for each person
- Part of the field of precision medicine, which aims to treat each patient individually

Pharmacogenomics (nih.gov)

Drug-dependent phenotype

Phenotype is often not recognized in the patient until:

- 1. Patient does not respond to a drug
- 2. Patient has an **adverse drug reaction**

Goal is to optimize drug dose and minimize adverse drug reaction

History of PGx

- Observational evidence that some adverse drug reactions were more frequent in certain ethnic groups
- The term "pharmacogenetics" was coined in 1959 for the concept that drug reactions are under genetic control
- Late 1970's-80's: drug response patterns identified in families and candidate genes begin to be identified

Important Pharmacogenes

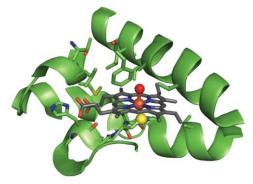
S. N	io. Involve in	Biological function group	VIP Gene
1	PK (kinetics)	Metabolizer (33)	ADH1A, ADH1B, ADH1C, ALDH1A1, ALOX5, COMT, CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, GSTP1, GSTT1, HMGCR, MTHFR, NAT2, NQO1, PTGIS, PTGS2, SULT1A1, TPMT, TYMS, UGT1A1, VKORC1
		Transporter (06)	ABCB1, CFTR, SLC19A1, SLC22A1, SLCO1B1, ABCG2
2	PD (dynamics)	Receptor (13) Signalling (07) Ion channel (04) Coagulation (01) Ribosomal RNA (01) Regulator (01)	ADRB1, ADRB2, AHR, ALK, DRD2, EGFR, ERBB2, NR112, P2RY1, P2RY12, RYR1, HLA-B, VDR ABL1, BRCA1, KIT, KRAS, NRAS, BRAF, BCR KCNH2, KCNJ11, SCN5A, CACNA1S F5 MT-RNR1 ACE

Red boxes = genes commonly tested by PGx assays

Pharmacokinetics:

absorption, distribution, metabolism, excretion

Pharmacodynamics:

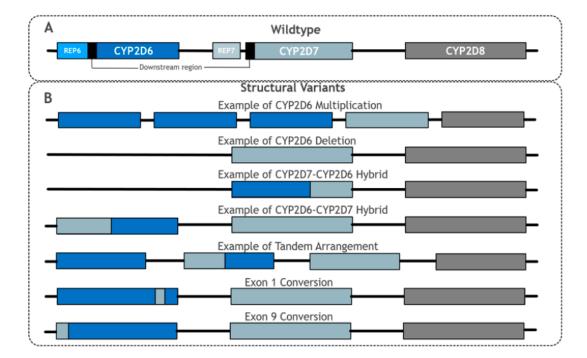

perturbs proteins involved in a drug's mechanism, or immune regulation

Katara et al 2019. PMID: 31425740

Cytochrome P450 (CYP)

- Hemeprotein that plays a key role in the metabolism of drugs and other xenobiotics
- 57 functional CYP genes (58 pseudogenes)
 - → a dozen CYP genes together metabolize ~70-80% of drugs

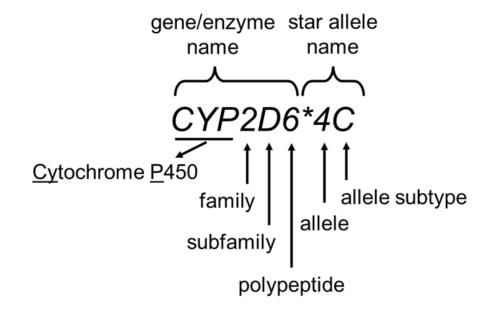
- ➤ family number (CYP2)
- ➤ subfamily letter (CYP2D)
- ➢ individual enzyme (CYP2D6) →



Typical active site of cytochrome P450 with heme group shown in the middle

https://f1000research.com/articles/4-178

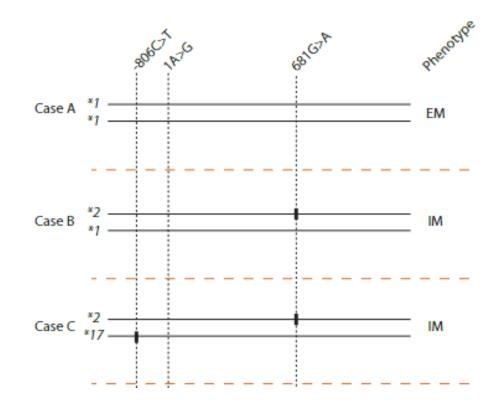
CYP2D6 metabolizes ~20% of commonly used drugs


CYP2D6: a complex genomic region

Taylor et al 2020. PMID: 33143137

PharmVar: Structural Variation CYP2D6

Star (*) allele nomenclature



- *1 alleles are normal/wild type/fully functional alleles
- star alleles are numbered in the order in which they were identified, not by their sequential order in the gene

Star alleles are determined by SNPs

 Allele calls after testing for *2 (rs4244285) and *17 (rs12248560) 'key' SNPs.

CYP2C19

EM = extensive metabolizer IM = intermediate metabolizer

Kalman et al 2016. PMID: 26479518

Example of how SNPs determine star alleles in CYP3A5

į	AutoSave 💽 Off	89~	୯		Verio	lose_GPS_SNP_STAR • Saved to this PC V Search				
F	ile Home	Insert	Page Layout	Formula	s Data	Review View Automate Help				
P	Cut □□	R	ibri <i>I</i> <u>∪</u> ~	 11 ₩ < 20 		Image: Symmetry in the symmet				
	Clipboard		F	ont	Г	Alignment 🕞 Number 🖓				
F3	8 -	: × 、	fx							
	A	В	С	D	E	F				
1 Veridose CYP3A5 SNP Star Allele										
2		rs28365083	rs776746	rs10264272	rs41303343	Activity				
3	*1	G	Т	С	D	Normal				
4	*2	Т	Т	С	D	BBRC 1996;221:466-70 - absence of protein accumulation in 2 of 5 defective individuals				
5	*3	G	С	С	D	decreased				
6	*6	G	Т	т	D	none				
7	*7	G	Т	С	Α	?decreased expression in some Afr-Amer'				
8										
9	NM_000777.5	c.1193C>A	c.6986A>G	c.624G>A	c.1035dup					
10	NG_007938.1	g.27289C>A	g.31611A>0	g.14690G>A	g.27131ins					
11		T398N	Splicedef	splice def	346fs					

***Disclaimer**: the SNP combinations shown here are just examples of how star alleles are determined and should not be used for clinical test interpretation

CYP2D6 shows how complex star alleles can get

AutoSave 🤇	• •	· (²· -		Veridose_G	PS_SNP_STAF	R • Saved to	this PC 🗸		R	Search									Brew
File Ho	me Insert	Page Layout F	ormulas [Data Rev	view Viev	w Auto	mate He	elp											
Paste	nt ppy ~	Calibri → B I U → ⊞ →	11 - A^ A		≡ ≫~	ab CD Wrap	Text	General	v • €0.00	Condition	al Format as	Normal Neutral	Bad Calculation	Good Check Cell	∽ v unsert	Delete Forma	} ∑ Auto ↓ Fill ~	Sort 8	7 C St Find i ~ Select
											 Table 				~				 Select
Clipboa	ard 🗔	Font		F3	Alig	nment		Num	ber 🕞			S	tyles			Cells		Editing	_
A		C D	E	E	G	L U	1		V		м	N	0	P	0	R	c	т	U
					0			,	ĸ	L	IVI	IN	0	۲	Q	n	3		0
1 Veric	lose CYP	2D6 SNP St	ar Allei	е															
2	rs16947	rs1135840 rs357426	86 rs3892097	rs1065852	rs5030655	rs5030867	rs5030865	rs5030656	rs201377835	rs5030862	rs774671100	rs28371706	dup4125_4133	rs72549353	rs72549354	rs59421388	s rs28371725	Activity	
3 *1	G	С Т	С	G	Α	Т	С	Α	G	С	D	G	D	А	D	С	С	Normal	
4 *2	А	G T	С	G	Α	Т	С	А	G	С	D	G	D	А	D	С	С	Normal	
5 *3	G	C D	С	G	Α	Т	С	А	G	С	D	G	D	А	D	C	С	None	
6 *4	G	G T	т	А	А	Т	С	А	G	С	D	G	D	А	D	С	С	None	
7 *6	G	СТ	С	G	D	Т	с	А	G	с	D	G	D	А	D	С	С	None	
8 *7	G	С Т	С	G	Α	G	С	Α	G	С	D	G	D	А	D	С	С	None	
9 *8	А	G T	С	G	Α	Т	Α	А	G	С	D	G	D	Α	D	С	С	None	
10 *9	G	C T	С	G	Α	Т	С	D	G	С	D	G	D	А	D	С	С	Decreased	
11 *10	G	G T	С	А	А	Т	С	А	G	С	D	G	D	A	D	С	С	Decreased	
12 *11	А	G T	С	G	Α	Т	С	А	С	С	D	G	D	A	D	C	С	None	
13 *12	А	G T	С	G	Α	Т	С	Α	G	т	D	G	D	А	D	С	С	None	
14 *114	А	G T	С	Α	Α	Т	т	А	G	С	D	G	D	А	D	С	С	None	
15 *14	А	G T	С	G	Α	Т	т	А	G	С	D	G	D	А	D	С	С	Decreased	
16 *15	G	СТ	С	G	А	Т	С	А	G	С	А	G	D	A	D	С	С	None	
17 *17	А	G T	С	G	А	Т	С	А	G	С	D	A	D	А	D	С	С	Decreased	
18 *18	G	С Т	С	G	Α	Т	с	Α	G	С	D	G	G	А	D	С	С	None	
19 *19	А	G T	С	G	Α	Т	С	Α	G	С	D	G	D	D	D	С	С	None	
20 *20	А	G T	С	G	Α	Т	С	Α	G	С	D	G	D	Α	С	С	С	None	
21 *29	А	G T	С	G	А	т	С	A	G	С	D	G	D	Α	D	т	С	Decreased	
22 *36	G	G T	С	Α	А	Т	С	Α	G	С	D	G	D	Α	D	С	С	No function	1
23 *41	А	G T	С	G	Α	Т	С	A	G	С	D	G	D	Α	D	С	т	Decreased	
24 *69	А	G T	С	А	А	т	С	A	G	С	D	G	D	Α	D	С	т	None	
25																			

***Disclaimer**: the SNP combinations shown here are just examples of how star alleles are determined and should not be used for clinical test interpretation

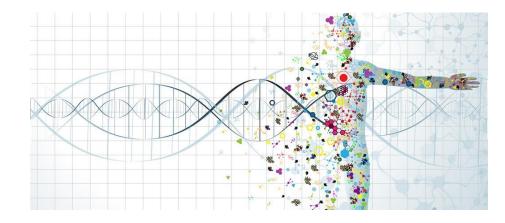
Core star alleles and subtypes are provided on PharmVar website

PharmVar

Allele Name	Legacy Label	PharmVar ID	Variants (rsIDs, Impact) variant = variants with dbSNP rsID	Allele Evidence Level	References
± <u>CYP2D6*4</u>		PV00429	1847G>A (<u>rs3892097</u> , splice defect)		CPIC Clinical Function
<u> CYP2D6*4.001 </u>	CYP2D6*4A	PV00235	(-1426C>T (rs28588594)) (-1235A>G (rs28735595)) (-1000G>A (rs1080989)) 100C>T (rs1065852, P34S) 310G>T (rs28371699)) (745C>G (rs28371701)) 842T>G (rs28371702) 973C>A (rs28371703, L91M) 983A>G (rs28371704, H94R) 996C>G (rs28371705)) 1662G>C (rs1058164)) rs1847G>A (rs3892097, splice defect) 2098A>G (rs2267447) 3385A>C (rs1985842)) 3583A>G (rs2004511)) 4181G>C (rs1135840, S486T) 4402C>T (rs28371738))	Def	deposited by Nofziger deposited by Gaedigk et al <u>Gough et al. 1990</u> <u>Hanioka et al. 1990</u> <u>Kagimoto el al 1990</u>
<u> </u>	CYP2D6*4B	PV00237	100C>T (rs1065852, P34S) 973C>A (rs28371703, L91M) 983A>G (rs28371704, H94R) 996C>G (rs28371705) (1847G>A (rs3892097, splice defect) (181G>C (rs1135840, S486T))	Lim	<u>Kagimoto el al 1990</u>
<u> CYP2D6*4.003 </u> CYP2D6*4.003	CYP2D6*4C	PV00236	100C>T (rs1065852, P34S) 1662G>C (rs1058164) (1847G>A (rs3892097, splice defect) 3888T>C (rs72549345) 4181G>C (rs1135840, S486T)	Lim	Yokota et al. 1993
<u> CYP2D6*4.004 </u>	CYP2D6*4D	PV00847	-1426C>T (rs28588594) -1000G>A (rs1080989) 100C>T (rs1065852, P34S) 310G>T (rs28371699) 842T>G (rs28371702) 1038C>T (rs1081003) 1662G>C (rs1058164) (1847G>A (rs3892097, splice defect) 2098A>G (rs2267447) 3385A>C (rs1985842) 3583A>G (rs2004511) 4181G>C (rs1135840, S486T) 4402C>T (rs28371738)	Def	deposited by Gaedigk et al <u>Marez et al. 1997</u> Liau et al. 2019

🚦 Core SNV

Challenges in the field


- Individual might be *1/*1 just because certain SNPs were not tested
- SNPs important to minority populations may not be known
- Previously reported gene-drug interactions may not be accurate
- Communicating clinical relevance to physicians and patients

PGx is a Key Part of Precision Medicine

- PGx has implications for large portion of population throughout life
- Not always reimbursed because value might come years after testing
- PGx could help bring precision medicine to general population

Why be interested?

Cutting-edge genetics

- Multiple variants in a gene (haplotypes)
- Complex regions (CYP2D6)
- Novel multiplex assays

Social implications

- Population genetics
- International collaborations
- Precision medicine

References

- Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. *HGG Adv.* 2022;3(2):100100. PMID: 35373152
- Kalman LV, Agúndez J, Appell ML, et al. Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting. *Clin Pharmacol Ther.* 2016;99(2):172-85.
 PMID: 26479518
- Katara P, Yadav A. Pharmacogenes (PGx-genes): Current understanding and future directions. *Gene*. 2019;718:144050. PMID: 31425740
- Pratt V, Ramey B, Sawyer G. Webinar: PGx Testing Developments and Future Directions. Agena Bioscience. 2023. <u>Link Here</u>
- Tayeh MK, Gaedigk A, Goetz MP, et al. Clinical pharmacogenomic testing and reporting: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2022;24(4):759-768. PMID: 35177334
- Taylor C, Crosby I, Yip V, et al. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel). 2020;11(11):1295. PMID: 33143137